NEUE TITANOCEN-DERIVATE MIT AMINOTHIOPHENOLAT-LIGANDEN

H. KÖPF*, S. GRABOWSKI und B. BLOCK

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12 (Deutschland)

(Eingegangen den 10. November 1982)

Summary

Titanocene dichloride (Cp₂TiCl₂; Cp = η^{5} -C₅H₅) reacts with the alkali aminothiophenolates NaSC₆H₄NH₂-o or LiSC₆H₄NH₂-p in tetrahydrofuran or benzene at room temperature. According to the applied stoichiometry, one or both of the chloride ligands are substituted, and the mono- or bis(aminothiophenolato) complexes Cp₂TiCl(SC₆H₄NH₂-o) (Ia), Cp₂TiCl(SC₆H₄NH₂-p) (Ib), Cp₂Ti(SC₆H₄NH₂o)₂ (IIa), or Cp₂Ti(SC₆H₄NH₂-p)₂ (IIb) are formed. Analogously, from Cp₂Ti(Cl)CH₃ Cp₂TiCH₃(SC₆H₄NH₂-o) (IIIa) or Cp₂TiCH₃(SC₆H₄NH₂-p) (IIIb) are obtained. IIb, which was isolated as a mixture with Ib, can be prepared in a pure state from Cp₂TiCl₂ and p-aminothiophenol in ether with triethylamine as supporting base.

All substances were investigated by IR, ¹H NMR and mass spectrometry. Fragmentation diagrams, based on the detection of metastable decays in the mass spectrometer, were established.

Zusammenfassung

Titanocen-dichlorid (Cp₂TiCl₂; Cp = η^5 -C₅H₅) reagiert mit den Alkaliaminothiophenolaten NaSC₆H₄NH₂-o oder LiSC₆H₄NH₂-p in Tetrahydrofuran oder Benzol bei Raumtemperatur je nach eingesetzter Stöchiometrie unter Substitution eines oder beider Chlorid-Liganden zu den entsprechenden Mono- bzw. Bis(aminothiophenolato)-Komplexen Cp₂TiCl(SC₆H₄NH₂-o) (Ia), Cp₂TiCl(SC₆H₄NH₂-p) (Ib), Cp₂Ti(SC₆H₄NH₂-o)₂ (IIa) und Cp₂Ti(SC₆H₄NH₂-p)₂ (IIb). In analoger Reaktionsführung bildet sich aus Cp₂Ti(Cl)CH₃ Cp₂TiCH₃(SC₆H₄NH₂-o) (IIIa) bzw. Cp₂TiCH₃(SC₆H₄NH₂-p) (IIIb). IIb, das im Gemisch mit Ib erhalten wurde, kann rein aus Cp₂TiCl₂ und p-Aminothiophenol mit Triethylamin als Hilfsbase in Ether dargestellt werden.

Alle Substanzen wurden IR-, ¹H-NMR- sowie massenspektrometrisch vermessen. Durch Nachweis metastabiler Zerfälle im Massenspektrometer wurden Fragmentierungsdiagramme erhalten.

Einleitung

Während Bis(thiophenolato)-Komplexe des Typs $Cp_2Ti(SR)_2$ ($Cp = \eta^5 - C_5H_5$) seit 1962 bekannt [1] und durch 1: 2-Reaktion von Dichloro-bis(η^5 -cyclopentadienyl)titan(IV) (Titanocen-dichlorid) mit den entsprechenden Alkali-thiophenolaten [1] oder den Thiophenolen unter Zusatz einer Hilfsbase [2,3] nach Gl. 2 und 3 leicht zugänglich sind, wurden die formal bei 1: 1-Umsetzung nach Gl. 1 zu erwartenden Mono(thiophenolato)-chloro-Derivate $Cp_2TiCl(SR)$ bisher nur in einer Redoxreaktion von Disulfiden mit Di- μ -chlorotetrakis(η^5 -cyclopentadienyl)dititan(III) nach Gl. 4 erhalten [4]:

$$Cp_2TiCl_2 + M^{I}SR \to Cp_2TiCl(SR) + M^{I}Cl$$
(1)

$$Cp_2TiCl_2 + 2M'SR \rightarrow Cp_2Ti(SR)_2 + 2M'Cl$$
⁽²⁾

$$Cp_2TiCl_2 + 2HSR + 2Bs \rightarrow Cp_2Ti(SR)_2 + 2Bs \cdot HCl$$
(3)

$$[Cp_{2}TiCl]_{2} + RSSR \rightarrow 2Cp_{2}TiCl(SR)$$
(4)

Die bei Einsatz von Aminothiophenolen in die Reaktion 3 ($R = C_6 H_4 N H_2$) isolierten Verbindungen waren bislang wenig untersucht. Als Hilfsbasen Bs kamen Triethylamin [5] sowie Ammoniak [6] zur Anwendung, wobei in letzterem Fall für das Umsetzungsprodukt mit o-Aminothiophenol das cyclische Derivat A oder das disubstituierte Derivat B – jeweils als Addukt mit weiterem o-Aminothiophenol – diskutiert wurden [6].

Setzt man aliphatische α, ω -Aminothiole mit Cp₂TiCl₂ um, so zeigen diese bifunktionellen Liganden eine Neigung zur zweizähnigen Koordination unter Bildung polymerer Komplexe, bei denen nicht nur Chlorid-, sondern auch Cyclopentadienyl-Liganden des Cp₂TiCl₂ substituiert sind [7].

Bei den hier beschriebenen Reaktionen von Cp_2TiCl_2 mit Alkalimetall-o- und -p-aminothiophenolaten haben wir die bifunktionelle Reaktionsweise dieser Ligandsalze – Ringschlussreaktion oder Polymerenbildung – präparativ nicht beobachten können. Ebensowenig trat eine Adduktbildung auf. Es entstand vielmehr je nach angewandter Reaktionsstöchiometrie (Gl. 1 oder 2) das Mono- oder das Disubstitutionsprodukt $Cp_2TiCl(SR)$ bzw. $Cp_2Ti(SR)_2$ mit $R = C_6H_4NH_2$. Letzteres liess sich günstig auch nach Gl. 3 aus den Aminothiophenolen unter Verwendung von Triethylamin als Hilfsbase darstellen.

Ergebnisse

Die Reaktion von Titanocen-dichlorid mit Natrium-o-aminothiophenolat in Tetrahydrofuran (THF) bzw. Lithium-p-aminothiophenolat in Benzol im Molverhältnis

TABELLE 1

CHARAKTERISTISCHE SIGNALE DER MASSENSPEKTREN "

m/e	Zuordnung	Relativ	e Signalin	tensitäten ((%)		
		Cp ₂ Ti((SPhN	C1- H ₂)	Cp ₂ Ti- (SPhN	H ₂) ₂	Cp ₂ TiC (SPhN	CH ₃ - H ₂)
		Ia	Ib	IIa	IIb	IIIa	IIIb
426	$Cp_2Ti(SPhNH_2)_2^+$				14		
337	$Cp_2TiCl(SPhNH_2)^+$	3	70				
317	$Cp_2TiCH_3(SPhNH_2)^+$					3	16
302	Cp ₂ TiSPhNH ₂ ⁺		9		47	41	100
301	Cp ₂ TiSPhNH ⁺	46		48		10	
272	CpTiCl(SPhNH ₂) ⁺	4	41				
236	CpTiSPhNH ⁺	100	100	100	36	100	20
213	Cp ₂ TiCl ⁺	21	12				
202	CpTiC ₆ H ₃ N ⁺	19	12	18	4	13	
178	Cp ₂ Ti ⁺	5	69	4	100	38	62
171	TiSPhNH ⁺		20		6		
170	TiSPhN +	6		5		3	
148	CpTiCl ⁺	26	28				
145	CpTiS ⁺	24		25	6	19	
113	CpTi+	8	3	7	10	13	18
83	TiCl ⁺	6	3				
80	TiS ⁺	14	11	79	38	6	24

^a Varian MAT 311 A; Elektronenstrahlionisation; Temperatur der Ionenquelle 90-160°C. Signalintensitäten unter 3% wurden nicht berücksichtigt. Cp = C_5H_5 ; Ph = C_6H_4 .

SCHEMA 2. Fragmentierung von Cp₂TiCl(SPhNH₂-o) (Ia) (Cp = C₅H₅, Ph = C₆H₄; Temperatur der Ionenquelle 150°C).

SCHEMA 3. Fragmentierung von Cp₂TiCl(SPhNH₂-p) (Ib) (Cp = C₅H₅, Ph = C₆H₄; Temperatur der Ionenquelle 180°C).

H-NMR-SIGNALE DE	R REAKTIONSPRODUKTE UND	VERGLEICHSSIGNALE ^a
------------------	-------------------------	--------------------------------

Verbindung		C _s H _s ^b	C ₆ H₄	NH ₂ ^c	CH ₃ ^b
Cp ₂ TiCl ₂	3.2	6.60			_
$Cp_{2}TiCl(SPhNH_{2}-o)$	(la)	6.31	6.93 ^d	4.10	-
$Cp_{1}TiCl(SPhNH_{1}-p)$	(Ib)	6.27	6.95 ^e	3.46	-
Cp ₂ Ti(SPhNH ₂ -o) ₂	(IIa)	6.05	6.92 ^d	4.23	-
$Cp_{1}Ti(SPhNH_{1}-p)_{1}$	(IIb)	5.99	7.00 °	3.69	-
Cp ₃ Ti(Cl)CH ₃		6.27	-	-	0.82
Cp_TiCH_(SPhNHo)	(IIIa)	6.02	6.92 ^d	3.88	0.37
$Cp_2TiCH_3(SPhNH_2-p)$	(IIIb)	6.00	7.02 °	3.68	0.31

^{*a*} Bruker WP 80; Werte gemessen in CDCl₃, δ (ppm). Bezugssignal CHCl₃, δ 7.27 ppm. Cp = C₅H₅; Ph = C₆H₄. ^{*b*} Singulett. ^{*c*} Verbreitertes Signal. ^{*d*} ABCD-Multiplett. ^{*e*} AA'BB'-Multiplett.

1/1 liefert bei Raumtemperatur die Aminothiophenolato-chloro-Komplexe Cp₂-TiCl(SPhNH₂-o) (Ia) und Cp₂TiCl(SPhNH₂-p) (Ib) (Schema 1; Ph = C₆H₄). Das tiefschwarze, bei 130-132°C schmelzende Ia ist in organischen Lösungsmitteln mit schwarzer Farbe löslich und zeigt erst in grösserer Lösungsmittelverdünnung eine Farbaufhellung nach rotbraun. Ib ist tiefrot und schmilzt bei 98-100°C; es ist ebenso gut löslich, jedoch mit dunkelroter Farbe.

In den Massenspektren beider Verbindungen (Tabelle 1, Schema 2 und 3) treten die Signale der Molekülionen sowie von Bruchstücken auf, die mit den vorgeschlagenen Strukturen (Schema 1) in Einklang sind. Für Ia ist die Bildung der Fragmente $Cp_2TiSPhNH^+$ und CpTiSPhNH⁺ (Basispeak) mit hoher Häufigkeit charakteristisch. Die intensivsten Signale rühren bei Ib vom Molekülion $Cp_2TiCl(SPhNH_2)^+$, von CpTiSPhNH⁺ (Basispeak) sowie von Cp_2Ti^+ her.

Im ¹H-Kernresonanzspektrum (Tabelle 2) beobachtet man bei Ia und Ib eine Hochfeldverschiebung des Singuletts der äquivalenten C_5H_5 -Protonen um etwa 0.3 ppm, verglichen mit dem Dichloro-Komplex Cp_2TiCl_2 . Die C_6H_4 -Protonen bilden im Fall der o-Verbindung Ia ein ABCD-Multiplett um δ 6.93 ppm; das AA'BB'-Multiplett der p-Verbindung Ib ist bei δ 6.95 ppm zentriert. Die NH₂-Protonen der o-bzw. p-Aminogruppe zeigen ein breites Signal bei δ 4.10 bzw. 3.46 ppm.

Bei der Umsetzung von Cp_2TiCl_2 mit zwei Äquivalenten NaSPhNH₂-o in THF bzw. LiSPhNH₂-p in Benzol (Schema 1) bildet sich bei Raumtemperatur nur $Cp_2Ti(SPhNH_2-o)_2$ (IIa) in reiner Form, während $Cp_2Ti(SPhNH_2-p)_2$ (IIb) im Gemisch mit Ib entsteht. Reines IIb lässt sich jedoch durch Reaktion von Cp_2TiCl_2 mit zwei Äquivalenten p-Aminothiophenol in Diethylether unter Verwendung von Triethylamin als Hilfsbase bei Raumtemperatur darstellen (Schema 1). Bei IIa und IIb handelt es sich um dunkelrote bzw. schwarze Feststoffe, die sich in polaren Lösungsmitteln mit blauvioletter Farbe leicht lösen. IIa schmilzt unter Zersetzung bei 96-98°C, IIb dagegen unzersetzt bei 112-115°C.

Im Massenspektrum von IIa (Tabelle 1, Schema 4) tritt das Molekülion bei Elektronenstrahlionisation nur in äusserst geringer Intensität auf. Durch hohe Signalintensität sind die Fragmentierungsprodukte Cp₂TiSPhNH⁺, CpTiSPhNH⁺ (Basispeak) und TiS⁺ ausgewiesen. Bei IIb (Tabelle 1, Schema 5) ist der Peak des

SCHEMA 4. Fragmentierung von $Cp_2Ti(SPhNH_2-\sigma)_2$ (IIa) ($Cp = C_5H_5$, $Ph = C_6H_4$; Temperatur der Ionenquelle 170°C).

Molekülions dagegen wesentlich ausgeprägter; hohe Signalintensität zeigen hier die Fragmente $Cp_2TiSPhNH_2^+$ und Cp_2Ti^+ .

Im ¹H-Kernresonanzspektrum (Tabelle 2) weisen die Bis(aminothiophenolato)-Komplexe IIa und IIb eine – im Vergleich zu Ia und Ib verdoppelte – Hochfeldverschiebung des C_5H_5 -Singuletts von etwa 0.6 ppm gegenüber Cp_2TiCl_2 auf.

SCHEMA 5. Fragmentierung von $Cp_2Ti(SPhNH_2-p)_2$ (IIb) ($Cp = C_5H_5$, $Ph = C_6H_4$; Temperatur der Ionenquelle 170°C).

Signallage und -muster der C_6H_4 -Protonen von IIa und IIb entsprechen den Befunden bei Ia und Ib. Das verbreiterte Signal der NH_2 -Protonen von IIa und IIb ist gegenüber dem betreffenden Signal von Ia bzw. Ib geringfügig (0.1 bzw. 0.2 ppm) zu niedrigerem Feld verschoben.

Von Cp₂Ti(Cl)CH₃ ausgehend wurden durch 1:1-Reaktion mit NaSPhNH₂-o bzw. LiSPhNH₂-p in Benzol/Toluol bzw. Benzol (Schema 1) die Methyltitan-Derivate Cp₂TiCH₃(SPhNH₂-o) (IIIa) und Cp₂TiCH₃(SPhNH₂-p) (IIIb) dargestellt. Das rehbraune IIIa (Fp. 115–118°C) und das dunkelbraune IIIb (F.p. 120–123°C) sind in organischen Medien besser löslich als die Chloro-Komplexe Ia und Ib. IIIa und IIIb zersetzen sich kurz oberhalb ihres Schmelzpunktes unter Gasentwicklung.

SCHEMA 6. Fragmentierung von $Cp_2TiCH_3(SPhNH_2-o)$ (IIIa) ($Cp = C_5H_5$, $Ph = C_6H_4$; Temperatur der Ionenquelle 130°C).

Im Massenspektrum (Tabelle 1, Schema 6 und 7) zeigen beide Produkte das Molekülion. Als besonders intensive Signale erscheinen bei IIIa CpTiSPhNH⁺ (Basispeak) und bei IIIb $Cp_2TiSPhNH_2^+$ (Basispeak) sowie Cp_2Ti^+ .

Die ¹H-Kernresonanzspektren (Tabelle 2) der Aminothiophenolato-methyl-Komplexe IIIa und IIIb sind bezüglich der Signallagen der C_5H_5 -Singuletts sowie der C_6H_4 -Multipletts den Spektren der entsprechenden Bis(aminothiophenolato)-Komplexe IIa bzw. IIb jeweils sehr ähnlich. Die Hochfeldverschiebung der C_5H_5 -Protonensignale von IIIa und IIIb beträgt etwa 0.6 ppm gegenüber Cp_2TiCl_2 und etwa 0.3 ppm gegenüber $Cp_2Ti(Cl)CH_3$. Gleichfalls eine Hochfeldverschiebung um

Verbindung [®]		v(CH)(CH ₃)	δ(NH)(NH ₂) ⁶	ω(CC)(Cp)	δ(CH)(Cp)	γ(CH)(Cp)	γ(CH)(Ph) "
Cp ₂ TiCl ₂		I	I	1430	1015	825	I
Cp2TiCl(SPhNH2-0)	(Ia)	· 1	1605, 1580	1445	1020	830	770
Cp2TiCl(SPhNH2-p)	(qI)	I	1610, 1580	1435	1015	820	820
Cp ₂ Ti(SPhNH ₂ -o) ₂	(IIa)	I	1595	1445	1025	830	765
Cp,Ti(SPhNH,-p),	(qII)	I	1610, 1590	1435	1020	815	815
Cp,Ti(CI)CH,		2945, 2875	ł	1435	1010	820	ı
Cp2TiCH ₃ (SPhNH ₂ -0)	(IIIa)	,2930, 2870	1580	1435	1015	820	755
Cp2TiCH ₃ (SPhNH ₂ -p)	(qIII)	2930, 2870	1610, 1580	1430	1015	825	825
" Perkin-Elmer 457, KB γ(CH)(Cp).	r-Pressling,	Werte in cm^{-1} . ^b Cp =	= C ₅ H ₅ , Ph = C ₆ H ₄ , ' Ü	berlagerung mit &(C	H)(Ph) und ω (CC)(P	h). ^d Bei <i>p</i> -Substituen	iten Überlagerung mit

AUSWAHL CHARAKTERISTISCHER ABSORPTIONSBANDEN DER INFRAROTSPEKTREN^a **TABELLE 3**

SCHEMA 7. Fragmentierung von $Cp_2TiCH_3(SPhNH_2-p)$ (IIIb) ($Cp = C_5H_5$, $Ph = C_6H_4$; Temperatur der Ionenquelle 150°C).

etwa 0.5 ppm ist an den Singuletts der CH_3 -Liganden von IIIa und IIIb, verglichen mit $Cp_2Ti(Cl)CH_3$, zu beobachten.

Von dem nach Literaturvorschriften [8,9] aus Cp_2TiCl_2 mit Methylmagnesiumchlorid in Ether dargestellten $Cp_2Ti(Cl)CH_3$ (Schema 1) wird hier ein Massenspektrum angegeben: Das Molekülion (m/e 228) tritt bei der Elektronenstrahlionisation nicht auf. Das intensivste Signal des Gesamtspektrums ist Cp_2TiCl^+ (m/e 213, rel. Int. 100%), was der Abspaltung der Methylgruppe entspricht. Weitere Fragmente sind: Cp_2Ti^+ (178, 13%); $CpTiCl^+$ (148, 64%); $C_3H_3TiCl^+$ (122, 11%); $CpTi^+$ (113, 7%); $TiCl^+$ (83, 13%).

Die Methylgruppe in $Cp_2Ti(Cl)CH_3$ ist auch hydrolytisch leicht abspaltbar, wobei sich $(Cp_2TiCl)_2O$ bildet [9]. Bei Umsetzungen mit $Cp_2Ti(Cl)CH_3$ muss deshalb sorgfältig unter Luft- und Feuchtigkeitsausschluss gearbeitet werden. Dagegen sind alle hier dargestellten Aminothiophenolato-Komplexe als Festsubstanzen relativ luftstabil, während sich die Lösung bei höherer Temperatur oder Lichteinwirkung sowie beim Stehenlassen an der Luft zersetzen.

Eine Auswahl charakteristischer Banden der Infrarotspektren aller hier dargestellten Verbindungen findet sich in Tabelle 3; eine ausführliche Auflistung aller Banden ist den Versuchsbeschreibungen beigefügt.

Diskussion

Bei den hier durchgeführten Reaktionen von Titanocen-dichlorid mit den potentiell zweizähnigen Aminothiophenolato-Liganden beobachteten wir abhängig von der Reaktionsstöchiometrie die Ausbildung einer oder zweier Titan-Schwefel-Bindungen gemäss Schema 1, während eine denkbare Bindung des Titans zum Stickstoffatom der Aminogruppe wie in A [6] unter den angewandten Reaktionsbedingungen präparativ nicht verwirklicht wurde. Ebenso bildeten sich ausgehend von $Cp_2Ti(Cl)CH_3$ und M¹SPhNH₂ die S-koordinierten Produkte IIIa bzw. IIIb (Schema 1), während die denkbare zusätzliche Methan-Abspaltung zu S, N-koordinierten Chelat- oder Brückenkomplexen ausblieb.

SCHEMA 8

Einzig im Massenspektrum konnten wir vor allem im Fall der o-Aminothiophenolate Ia, IIa und IIIa das Auftreten der hier vermutlich cyclischen, S, Nkoordinierten Spezies Cp₂TiSPhNH⁺ (C) und CpTiSPhNH⁺ (D) beobachten (Tabelle 1, Schema 8). Für den elektronenstossinduzierten Zerfall von Ia (Schema 2) und IIIa (Schema 6) ist die HCl- bzw. CH₄-Abspaltung aus dem Molekülion zu C massenspektrometrisch durch die entsprechenden metastabilen Signale belegt, ebenso der für Ia, IIa (Schema 4) und IIIa einheitliche weitere Abbau von C, der hauptsächlich durch aufeinanderfolgende Cp- und CpH-Abspaltung über D zum möglicherweise gleichfalls cyclischen TiSPhN⁺ sowie in geringerem Ausmass durch H₂S-Abspaltung zu Cp₂TiC₆H₃N⁺ verläuft.

Die offenbar bevorzugte Fragmentierung der o-Aminothiophenolato-Komplexe nach Schema 8 über die durch Ringbildung stabilisierten Bruchstücke C und D führt dazu, dass das Molekülion hier allgemein mit geringer, D dagegen mit jeweils maximaler Intensität im Massenspektrum auftritt. Als weitere, durch metastabile Übergänge abgesicherte Zerfallsweisen dieser Molekülionen erscheinen bei Ia die Abspaltung von Cp oder SPhNH₂, bei IIIa von CpH, CH₃ oder CH₃SPhNH₂, wobei die beiden letztgenannten Fragmentierungswege die relativ hohe Auftrittshäufigkeit der Fragmente Cp₂TiSPhNH₂⁺ und Cp₂Ti⁺ bei IIIa bedingen. Ansonsten sind gerade diese beiden Fragmente für die *p*-Aminothiophenolate Ib, IIb und IIIb (Schema 3, 5 und 7) charakteristisch und meist mit hoher Häufigkeit vertreten, während das C in der Summenformel entsprechende Bruchstück Cp₂TiSPhNH⁺ hier nicht (bzw. bei IIIb nur in geringer Intensität) vorkommt. Ein allgemeiner Abbauweg der intensitätsmässig ausgeprägteren Molekülionen der *p*-AminothiophenolatoKomplexe scheint über $Cp_2TiSPhNH_2^+$ zu verlaufen, von dem aus, wie die aufgefundenen metastabilen Signale zeigen, die Eliminierung von H_2S zu Cp_2TiPhN^+ , von SPhNH₂ zu Cp_2Ti^+ und von CpH zu CpTiSPhNH⁺ führt. Das D in der Summenformel entsprechende, bei Ib sogar mit maximaler Intensität auftretende CpTiSPhNH⁺ spielt offenbar auch im Fragmentierungsmuster der *p*-Verbindungen eine bevorzugte Rolle.

In den ¹H-NMR-Spektren unterscheiden sich die o- von den p-Aminothiophenolato-Komplexen des gleichen Typs (abgesehen vom unterschiedlichen Kopplungsmuster der C_6H_4 -Protonen) praktisch nur durch eine Tieffeldverschiebung der o-NH₂- gegenüber den p-NH₂-Protonensignalen von 0.6 bei Ia/Ib, 0.5 bei IIa/IIb und 0.2 ppm bei IIIa/IIIb. Dagegen fällt die aus den unterschiedlichen Verschiebungswerten der C_5H_5 -Protonen bei Mono- und Bis(aminothiophenolato)-Komplexen deutlich ablesbare Donorwirkung der Aminothiophenolat-Liganden gegenüber dem Titanocen-Gerüst ins Auge. Die in der Reihe

$$Cp_2TiCl_2 < Cp_2Ti(Cl)CH_3 \cong Ia \cong Ib < IIa \cong IIb \cong IIIa \cong IIIb$$

um jeweils 0.3 ppm zunehmende Hochfeldverschiebung der C_5H_5 -Protonensignale zeigt, dass die Schwefel-Donorliganden eine erhöhte Elektronendichte am Titanatom bewirken, die sich in einer erhöhten Abschirmung der C_5H_5 -Protonen äussert. Die Liganden SPhNH₂-o, SPhNH₂-p und CH₃ zeigen dabei in etwa den gleichen abschirmenden Effekt. Auch das Singulett der CH₃-Protonen weist mit einer Hochfeldverschiebung von etwa 0.5 ppm in der Komplexreihe Cp₂Ti(Cl)CH₃ < IIIa \cong IIIb als Sonde für die Elektronendichte am Titanatom auf deren Erhöhung durch die Aminothiophenolat-Liganden hin.

Experimentelles

Alle Reaktionen wurden unter Argon durchgeführt. Tetrahydrofuran (THF), Diethylether, Pentan, Benzol und Toluol wurden vor der Verwendung von einer Na/K-Legierung im Argonstrom frisch abdestilliert, Triethylamin war über Kaliumhydroxid getrocknet und destilliert. Aminothiophenole wurden vor Verwendung im Ölpumpenvakuum destilliert. n-Butyllithium kam in käuflicher 15%iger (1.6 mol 1⁻¹) Lösung in n-Hexan zum Einsatz. Cp_2TiCl_2 war nach [10] erhältlich. $Cp_2Ti(Cl)CH_3$ wurde in Anlehnung an [9] aus Cp_2TiCl_2 in Ether und einer käuflichen 20%igen (3 mol 1⁻¹) Lösung von Methylmagnesiumchlorid in THF bei Raumtemperatur dargestellt. Die Schmelzpunktbestimmungen erfolgten auf einem Kofler-Mikroheiztisch. Zur Aufnahme der Infrarotspektren dienten Kaliumbromid-Presslinge der Substanzen. Für die Erstellung der Fragmentierungsdiagramme wurden die metastabilen Zerfälle im 1. feldfreien Raum des Massenspektrometers mittels einer "linked scan"-Technik (magnetfeld-gesteuerte Änderung der Ablenkspannung des elektrostatischen Analysators) registriert.

1. Natrium-o-aminothiophenolat

0.35 g (15 mmol) Natrium wurden in 50 ml heissem Toluol granuliert (ggf. wurde Toluol sodann abpipettiert und durch 50 ml THF ersetzt) und bei Raumtemperatur mit 0.63 g (5 mmol) o-Aminothiophenol 20 h gerührt. Die farblose Suspension von $NaSC_6H_4NH_2$ -o wurde durch Abdekantieren vom zusammengeballten überschüssigen Natrium abgetrennt.

2. Lithium-p-aminothiophenolat

3.2 ml (5 mmol) einer Lösung von n-Butyllithium (1.6 mol l^{-1}) in Hexan wurden in eine Lösung von 0.63 g (5 mmol) *p*-Aminothiophenol in 50 ml Benzol eingespritzt. Die sich sofort bildende farblose Suspension von LiSC₆H₄NH₂-*p* wurde 1 h bei Raumtemperatur gerührt.

3. o-Aminothiophenolato-chloro-bis(η^5 -cyclopentadienyl)titan(IV) (Ia)

Zur gerührten Lösung von 1.25 g (5 mmol) Cp_2TiCl_2 in 100 ml THF wurde portionsweise innerhalb 1 h die Suspension von 5 mmol $NaSC_6H_4NH_2$ -o in THF gegeben, wobei die anfangs hellrote Lösung sich tief schwarzrot verfärbte. Nach 2 h Rühren bei Raumtemperatur wurde von NaCl abfiltriert und das Lösungsmittel im Vakuum bis auf ca. 50 ml abgezogen. Nach Zugabe von Pentan bis zur beginnenden Fällung wurde 20 h bei Raumtemperatur stehengelassen und filtriert. Nach erneutem Einengen bis auf wenige ml fiel eine schwarze Festsubstanz aus, die abgesaugt und mit wenig Toluol gewaschen wurde. Nach Trocknen im Vakuum verblieben 1.0 g (59%) analysenreines Ia als schwarzes amorphes Pulver, Fp. 130–132°C. (Gef. C, 56.22; H, 4.98; Cl, 10.62; N, 3.97. $C_{16}H_{16}CINSTi$ (337.73) ber.: C, 56.90; H, 4.78; Cl, 10.50; N, 4.15%.)

IR-Absorptionen (cm⁻¹): 3430m; 3330m; 3100w, br; 1605s; 1580w, sh; 1475s; 1445s; 1365w; 1310m; 1270vw; 1250w; 1155m; 1140vw; 1070m; 1030m,sh; 1020s; 970vw; 940w; 870m,sh; 855m, sh; 845m,sh; 830vs; 770s; 730vw; 680vw; 605vw; 560w; 470w; 430w; 390vw,sh; 370w (vw = sehr schwache, w = schwache, m = mittelstarke, s = starke, vs = sehr starke Intensität; br = breit; sh = Schulter).

4. p-Aminothiophenolato-chloro-bis(η^5 -cyclopentadienyl)titan(IV) (Ib)

Ansatz und Reaktionsführung erfolgten wie bei Ia unter 3., jedoch in Benzol mit $LiSC_6H_4NH_2$ -p. Die tiefviolette Reaktionsmischung wurde 20 h bei Raumtemperatur gerührt und filtriert. Der nach dem Abziehen des Solvens im Vakuum verbleibende Rückstand wurde mit Ether angereiben, die rotbraune Festsubstanz abgesaugt und mit Ether gewaschen. Nach Trocknen im Vakuum verblieben 1.2 g (70%) Ib, Fp. 98–100°C. (Gef. C, 56.07; H, 4.84; Cl, 11.03; N, 3.97. C₁₆H₁₆ClNSTi (337.73) ber.: C, 56.90; H, 4.78; Cl, 10.50; N, 4.15%.)

IR (cm⁻¹): 3420vw,br; 3300w,br; 3080w,br; 1610m; 1580s; 1480s; 1435m; 1285w; 1255w; 1195vw; 1175m; 1085m,br; 1015m; 820vs; 700m,br; 605w,br; 525w; 510w,sh; 415vw,br; 385vw; 370vw.

5. Bis(o-aminothiophenolato)-bis(η^5 -cyclopentadienyl)titan(IV) (IIa)

Zur Suspension von 10 mmol NaSC₆H₄NH₂-o in 100 ml THF wurde innerhalb von 30 min eine Lösung von 1.25 g (5 mmol) Cp₂TiCl₂ in 200 ml THF getropft, wobei sich die Reaktionsmischung tief blauviolett verfärbte. Nach 20 h Rühren bei Raumtemperatur wurde filtriert und das Lösungsmittel abgezogen. Der schmierige schwarze Rückstand wurde in 150 ml Toluol aufgenommen. Erneutes Filtrieren, weitgehendes Abziehen des Solvens und vorsichtiges Fällen mit Pentan lieferte 1.3 g (61%) IIa als tiefrotes, amorphes Pulver, Fp. 96–98°C unter Zersetzung. (Gef. C, 61.48; H, 5.39; N, 6.23. C₂₂H₂₂N₂S₂Ti (426.46) ber.: C, 61.96; H, 5.20; N, 6.57%.)

IR (cm⁻¹): 3430w,br; 3330w,br; 3100vw,br; 1595s; 1475s; 1445m; 1300w,br; 1250w; 1160w; 1140vw,br; 1080w,br; 1025m; 1015m,sh; 830s; 765s; 680w; 605w; 470vw,br.

6. Bis(p-aminothiophenolato)-bis(η^{5} -cyclopentadienyl)titan(IV) (IIb)

1.0 g (4 mmol) Cp₂TiCl₂ wurden in 100 ml Ether suspendiert und mit 1.12 ml (8 mmol) Triethylamin versetzt. Unter Rühren wurde innerhalb von 90 min eine Lösung von 1.0 g (8 mmol) *p*-Aminothiophenol in 50 ml Ether zugetropft, wobei sich die Reaktionsmischung tief blauviolett verfärbte. Es wurde 20 h bei Raumtemperatur gerührt, von Triethylamin-hydrochlorid abfiltriert und dieses mit Ether ausgewaschen. Die vereinigten Etherlösungen wurden im Vakuum bis auf wenige Milliliter eingeengt, worauf IIb als schwarze Festsubstanz ausfiel. Absaugen und Waschen mit wenig Ether lieferte 0.68 g (37%) analysenreines IIb, Fp. 112–115°C. (Gef. C, 62.25; H, 4.81; N, 5.73. C₂₂H₂₂N₂S₂Ti (426.46) ber.: C, 61.96; H, 5.20; N, 6.57%.)

IR (cm⁻¹): 3380w; 3300w; 3100w; 1610s; 1590s; 1480vs; 1435w,br; 1360vw; 1285m,sh; 1265s; 1175s; 1080w,br; 1065w,br; 1020m; 1010m; 935vw; 915vw; 825vs,sh; 815vs; 625w,br; 600w,br; 520m; 510w,sh; 400vw; 360w.

Führt man die Reaktion wie unter 5. für IIa beschrieben, jedoch in Benzol mit $LiSC_6H_4NH_2$ -*p* durch, so erhält man nach Umkristallisieren aus wenig Ether ein Gemisch von IIb und Ib, das sich ¹H-NMR-spektrometrisch identifizieren lässt (Tabelle 2).

7. o-Aminothiophenolato-methyl-bis(η^{s} -cyclopentadienyl)titan(IV) (IIIa)

Zur Suspension von 5 mmol NaSC₆H₄NH₂-o in Toluol wurde unter Rühren innerhalb 1 h eine Lösung von 1.14 g (5 mmol) Cp₂Ti(Cl)CH₃ in 100 ml Benzol getropft. Die schwarze Reaktionsmischung wurde 2 h bei Raumtemperatur gerührt und filtriert. Nach Abziehen des Lösungsmittels im Vakuum und Anreiben des Rückstandes mit reichlich Ether konnten 0.5 g (31%) IIIa als rehbraune, feinkristalline Festsubstanz isoliert werden; Fp. 115–118°C, bei 120°C Zersetzung unter Gasentwicklung. (Gef. C, 64.59; H, 5.91; N, 4.42. C₁₇H₁₉NSTi (317.31) ber.: C, 64.35; H, 6.04; N, 4.41%.)

IR (cm⁻¹): 3420w,br; 3330w; 3090w; 3070w; 3030vw; 2980vw; 2930w; 2870w; 1580s; 1460s; 1435s; 1365w; 1290m; 1245w; 1150m; 1130w; 1070m; 1025m,sh; 1015s; 930w; 920w,sh; 900vw; 855m,sh; 850s,sh; 840s,sh; 830vs,sh; 820vs; 750vs; 730vw; 680m; 600w,br; 550vw; 465w; 430w; 395w; 370w; 315w.

8. p-Aminothiophenolato-methyl-bis(η^{5} -cyclopentadienyl)titan(IV) (IIIb)

Ansatz und Reaktionsführung erfolgten wie bei IIIa unter 7., jedoch mit $LiSC_6H_4NH_2$ -p in Benzol. Der nach Abziehen des Lösungsmittels verbleibende Rückstand wurde mit Ether angerieben und ergab 0.5 g (31%) IIIb als dunkelbraune Festsubstanz; Fp. 120–123°C, bei 125°C Zersetzung unter Gasentwicklung. (Gef. C, 63.94; H, 6.01; N, 4.21. $C_{17}H_{19}NSTi$ (317.31) ber.: C, 64.35; H, 6.04; N, 4.41%.)

IR (cm⁻¹): 3400w; 3300m; 3180vw; 3080vw,br; 2915w; 2870vw; 1610m; 1580s; 1480vs; 1430m; 1370vw; 1275s; 1260m; 1170m; 1090m,br; 1020s; 925w; 855m,sh; 820vs; 640vw; 605w; 520s; 480w; 435vw; 415vw; 375w.

Dank

Unser Dank gilt Herrn Prof. Dr. J. Müller für die Diskussion und Frau A. Stöckel für die Aufnahme der Massenspektren, sowie dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung der Arbeit. 256

- 1 S.A. Giddings, U.S. Pat. 3030395 (1962).
- 2 H. Köpf und M. Schmidt. Z. Anorg. Allg. Chem., 340 (1965) 139.
- 3 S.A. Giddings, Inorg. Chem., 6 (1967) 849.
- 4 R.S.P. Coutts, J.R. Surtees, J.M. Swan und P.C. Wailes, Aust. J. Chem., 19 (1966) 1377.
- 5 B. Block, Dissertation, Universität Würzburg 1968.
- 6 D.N. Sen und U.N. Kantak, Indian J. Chem., 9 (1970) 254.
- 7 H. Köpf und S. Grabowski, Z. Anorg. Allg. Chem., im Druck.
- 8 K. Clauss und H. Bestian, Liebigs Ann. Chem., 654 (1962) 8.
- 9 H.C. Beachell und S.A. Butter, Inorg. Chem., 4 (1965) 1133.
- 10 G. Wilkinson und J.M. Birmingham, J. Amer. Chem. Soc., 76 (1954) 4281.